Integration of evolutionary computation algorithms and new AUTO-TLBO technique in the speaker clustering stage for speaker diarization of broadcast news
نویسندگان
چکیده
The task of speaker diarization is to answer the question "who spoke when?" In this paper, we present different clustering approaches which consist of Evolutionary Computation Algorithms (ECAs) such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, and Differential Evolution (DE) algorithm as well as Teaching-Learning-Based Optimization (TLBO) technique as a new optimization technique at the aim to optimize the number of clusters in the speaker clustering stage which remains a challenging problem. Clustering validity indexes, such as Within-Class Distance (WCD) index, Davies and Bouldin (DB) index, and Contemporary Document (CD) index, is also used in order to make a correction for each possible grouping of speakers' segments. The proposed algorithms are evaluated on News Broadcast database (NDTV), and their performance comparisons are made between each another as well as with some well-known clustering algorithms. Results show the superiority of the new AUTO-TLBO technique in terms of comparative results obtained on NDTV, RT-04F, and ESTER datasets of News Broadcast.
منابع مشابه
Speaker Diarization: From Broadcast News to Lectures
This paper presents the LIMSI speaker diarization system for lecture data, in the framework of the Rich Transcription 2006 Spring (RT-06S) meeting recognition evaluation. This system builds upon the baseline diarization system designed for broadcast news data. The baseline system combines agglomerative clustering based on Bayesian information criterion with a second clustering using state-of-th...
متن کاملUniversité Paris Xi Ufr Scientifique D'orsay Le Grade De Docteur En Sciences De L'université Paris Xi Orsay Sujet : Acoustic-based Speaker Diarization
This thesis presents a work focusing on the topic of speaker diarization for different types of audio recordings, especially including broadcast news (BN) and meetings. The speaker diarization is a relatively recent speech processing technique, but it has attracted strong research efforts due to its great benefit to other speech technologies, such as rich transcription, audio indexing and speak...
متن کاملSpeaker Attribution of Australian Broadcast News Data
Speaker attribution is the task of annotating a spoken audio archive based on speaker identities. This can be achieved using speaker diarization and speaker linking. In our previous work, we proposed an efficient attribution system, using complete-linkage clustering, for conducting attribution of large sets of two-speaker telephone data. In this paper, we build on our proposed approach to achie...
متن کاملAn open-source state-of-the-art toolbox for broadcast news diarization
This paper presents the LIUM open-source speaker diarization toolbox, mostly dedicated to broadcast news. This tool includes both Hierarchical Agglomerative Clustering using well-known measures such as BIC and CLR, and the new ILP clustering algorithm using i-vectors. Diarization systems are tested on the French evaluation data from ESTER, ETAPE and REPERE campaigns.
متن کاملA global optimization framework for speaker diarization
In this paper, we propose a new clustering model for speaker diarization. A major problem with using greedy agglomerative hierarchical clustering for speaker diarization is that they do not guarantee an optimal solution. We propose a new clustering model, by redefining clustering as a problem of Integer Linear Programming (ILP). Thus an ILP solver can be used which searches the solution of spea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Audio, Speech and Music Processing
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017